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Abstract

Contemporary financial depression of the fsiahmarkets proves high fluctuations of the
prices of the stocks. These fluctuations have demable impact on the values of the
financial portfolios. Classical approaches to modglof the behavior of the prices of the
stocks may produce wrong predictions of their fatwalues. That is the reason why we
introduce in this paper the fractal market analydisactal structure accepts global
determinism and local randomness of the behavidheffinancial time series. We will use
R/S analysis in this paper. R/S analysis can djaish fractals from other types of time
series, revealing the self-similar statistical stiive.
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1. Introduction

The financial markets are an important part of angnomy. For that reason, financial
markets are also an important aspect of every mufdéle economy Markets are “efficient”
if prices reflect all current information that cdunticipate future events. Therefore, only the
speculative, stochastic component could be modé#hedchange in prices due to changes in
value could not. If markets do not follow a randeslk, it is possible that we may be over-or
understanding our risk and return potential fronesting versus speculating.

2. Introduction to Fractals and the Fractal dimensions

The development of fractal geometry has been ontbeR0-th century’s most useful
and fascinating discoveries in mathematics ([245p. Fractals give structure to complexity,
and beauty to chaos. Most natural shapes, and garies, are best described by fractals.
Fractals are self—referential, or self—similar.d&ahshapes show self—similarity with respect
to space. Fractal time series are random fracdiggch have more in common with natural
objects than the pure mathematical fractals we @olter initially. We will be concerned
primarily with fractal time series, but fractal gles give a good intuitive base for what “self-
similarity” actually means. Figure 1 shows dailydaneekly Bank of America Corporation
price€ for consecutive observations from march 2007 ty 8@09. With no scale on thé
and Y axes, we are not able to determine which graplwhgh. Figure 1 illustrates self-
similarity in a time series.

! http://www.economymodels.com/financialmarkets.asp
2 Data were retrieved from www.yahoo.com
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Figure 1. Daily and weekly prices of stock Bank of America Corp.

Fractal shapes can be generated in many ways.ifipéest way is to take a generating
rule and iterate it over and over again. Randorotdta are combination of generating rules
chosen at random for different scales. Combinatforandomness coupled with deterministic
generation rules, or “causality”, can make fractaeful in capital market analysis. Random
fractals ([2], p.51) do not necessarily have pidtes look like pieces of the whole. Instead,
they may be qualitatively related. In the caseiwietseries, we will find that fractal time
series are qualitatively self similar in that, dfedent scales, the series have similar statiktica
characteristics. If we would like to understand tinelerlying causality of the structure of time
series, then classical geometry offers little hélfay be, time series is a random walk — a
system so complex that the prediction becomes isiples In statistical term, the number of
degrees of freedom or factors influencing the sysie very large. These systems are not
well-described by standard Gaussian statisticsndaral statistical analysis begins by
assuming that the system under study is primaahdom; that is, the causal process that
created the time series has many component partlegree of freedom, and the interaction
of those components is so complex that determinestplanation is not possible ([1], p.53).
Only probabilities can help us to understand arkk tadvantage of the process. The
underlying philosophy implies that randomness aetémninism cannot coexist. In order to
study the statistics of these systems and createra general analytical framework, we need
a probability theory that is nonparametric. In tipaper we introduce nonparametric
methodology that was discovered by H.E. Hurst

In advance, we introduce the term fractal dimensidre fractal dimension describes
how a time series fills its space, is the productlb factors influencing the system that
produces time series ([2], p.57). Fractal time esetan have fractional dimensions. The
fractal dimension of a time series measures howegdghe time series is ([1], p.16). As
would be expected, a straight line has a fractaledision of 1. Time series is only random
when it is influenced by a large number of eveht aire equally likely to occur. In statistical
term, it has a high number of degree of freedomadom series would have no correlation
with previous points. Nothing would keep the poimtshe same vicinity, to preserve their
dimensionality. Instead, they will fill up whatevepace they are placed in. A nonrandom
time series will reflect the nonrandom nature sfiitfluences. The data will clump together,
to reflect the correlations inherent in its inflees. In other words, the time series will be
fractal. To determine the fractal dimension, we tmsasure how the object clumps together
in its space. However, a random walk has 50-50ashahrising or falling, hence, its fractal
dimension is 1.50. The fractal dimension of a tisegies is important because it recognizes
that process can be somewhere between determifadtice with fractal dimension of 1) and
random (a fractal dimension of 1.50). In fact, fteetal dimension of a line can range from 1

% Hurst, H.E. 1951. The Long-Term Storage CapaditiR@servoirs. In: Transaction of the American Stcisf
Civil Engineers 116.
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to 2. The normal distribution has an integer dinnem®f 2, which many of characteristics of
the time series. At values 1.56<2, a time series is more jagged than a randorasseri

They are many ways of calculating fractal dimensidWe introduce methodology of
the Hurst exponeri, and we convert it into the fractal dimensabim this paper.

3. R/S analysisand Hur st exponent

Hurst was aware of Einsteifi'work of Brownian motion. Brownian motion became th
primary model for a random walk process. Einst@uanfl that the distance that a random
particle covers increases with the square roahw# tised to measure it, or:

R=T* (1)
whereR is the distance covered amds a time index.
Equation (1) is called th@ to the one-half ruleand it is commonly used in statistics.
Financial economists use it to annualize volatibtystandard deviation. To standardize the
measure over time, Hurst decided to create a dilm@liess ratio by dividing the range by the
standard deviation of the observations. Hence attadysis is called rescaled range analysis
(R/S analysis). Hurst found that most natural phesrea follow a “biased random walk” — a
trend with noise. The strength of the trend andl¢vel of noise could be measured by how
the rescaled range scales with time, that is, by high H is above 0.50. Peters ([1] p.56)
reformulated Hurst's work for a general time seag$ollows.

We begin with a time series, X&f X2, ..., X,}, t0 represenh consecutive values. For
markets, it can be the daily changes in price cftack index. The rescaled range was
calculated by first rescaling or “normalizing” thata by subtracting the sample megn

Zrz(xr—xm)| r=1!2)"'n (2)
The resulting serieg, now has a mean of zero. The next step createsalative time series
Y:

Y1=(Z1+Z)), r=2,3,...n (3)
Note that, by definition, the last value ¥{Y,) will always be zero becaughas a mean of
zero. The adjusted rand®,, is the maximum minus minimum value of the

Rn:ma)(Yl, Yo,..., Yn)—min(Yl, Yo,..., Yn) (4)
The subscriptp, for R, now signifies that this is the adjusted rangexiox,, ..., X,. Because
Y has been adjusted to a mean of zero, the maximiue @&Y will always be greater than or
equal to zero, and the minimum will always be léss or equal to zero. Hence, the adjusted
range,R,, will always be nonnegative. This adjusted rargjejs the distance that the system
travels for time index. If we setn=T, we can apply equation (1), provided that the time
series,X, is independent for increasing valuesnofHowever, equation (1) applies only to
time series that are in Brownian motion (they haee mean, and varianceequal to one).
To apply this concept to time series that are ndrownian motion, we need to generalized
equation (1) and take into account systems thamatendependent. Hurst found that the
following was a more general form of equation (1):

(R/S)=c.n"! (5)
The subscript, for (R/S), refers to the R/S value fay, o, ..., X, andc is a constant.

The R/S value of equation (5) is referred to asrésealed rangéecause it has zero
mean and is expressed in terms of local standasidtt®. In general, the R/S value scaled as
we increase the time increment, by a power—law value equal td, generally called the
Hurst exponent

Rescaling allows us to compare periods of time thay be many apart. In comparing
stock returns of the 1920s with those of the 198Wges present a problem because of
inflationary growth. Rescaling minimize this profigby rescaling the data to zero mean and
standard deviation of one, to allow diverse phenmmand time periods to be compared.

* Einstein, A. 1908. Uber die von der molekularkisetien Theorie der Warme geforderte Bewegung von in
ruhenden Flissigkeiten suspendierten Teilchen. rofdPhysics 322.
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Rescaled range analysis can also describe timesgbat have no characteristic scale. This is
a characteristic of fractals.

The Hurst exponent can be approximated by plottiegogR/S,) versus the log) and

solving for the slope through an ordinary leastesgs regression:
log(R/'S))=log(c)+H.log(n) (6)

If a system is independently distributed, th¢m0.50. WherH differed from 0.50, the
observations are not independent. Each observesioted a ,memory*“ of all the events that
preceded it. What happens today influences theduivhere we are now is a result of where
we have been in the past. Time is important. Theah of the present on the future can be
expressed as a correlation:

C=2@"1_7, (7)
whereC is correlation measure aitlis Hurst exponent.
It is important to remember that this correlatioeasure is not related to the Auto Correlation
Function (ACF) of Gaussian random variables ([2}0p. The ACF assumes Gaussian, or
near-Gaussian, properties in the underlying distitim. The ACF works well in determining
short-run dependence, but tends to understate rlamgorrelation for non-Gaussian series
(full mathematical explanation we find in [5].
There are three distinct classifications for thedlexponent ([2], p.64):

1. H=0.50: time series is random, events are randonuandrrelated. Equation (7)
equals zero. The present does not influence theeutts probability density
function can be normal curve, but it does not haviee. R/S analysis can classify
an independent series, no mater what the shape efnderlying distribution.

2. 0<H<0.50: time series is antipersistent, or ergoditheé time series has been up
in the previous period, it is more likely to be dou the next period. Conversely,
if it was down before, it is more likely to be upthe next period. The strength of
this antipersistent behavior depends on how dib$e to zero. The closer it is to
zero, the close€ in equation (7) moves toward —0.50, or negativeetation.
This time series is more volatile than a randorneser

3. 0.50<H<1.00: time series have a persistent or trendoeiiig character. If the
series has been up (down) in the last period, thenchances are that it will
continue to be positive (negative) in the next eriTrend is apparent. The
strength of the trend-reinforcing behavior, or pemce, increases all
approaches 1.0. The cloddss to 0.5, the noisier it will be, and the lessird
its trends will be. Persistent series are fractlidB@wnian motion, or biased
random walR. The strength of the bias depends on howHds above 0.50. A
high H value shows less noise, more persistence anceclegands than do lower
value. A highH means less risk.

4, Testing R/S analysis
To evaluate the significance of R/S analysis, wWeutate expected value of the R/S
statistics and the Hurst exponent. We compare ¢h@wor of our process, described by R/S

analysis with an independent and random systengange its significance.
We will test this null hypothesis: “The processingependent, identically distributed

and is characterized by a random walk”
To verify this hypothesis, we calculate expectetl@af the adjusted rang&(R/S,)

and its variandevar(E(R'S,)).

® Biased random walks were extensively studied bgstin the 1940s and again by Mandelbrot in theD%hd
1970s. Mandelbrot called them fractional browniastions.([2], p.61)

® This process has Gaussian structure (see [1]).p.66
" This formula was derrived by Anis and Lloyd ([]71)
8 variance was calculated by Feller ([1], p.66)
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E(RIS) =" 05[@ j Z (n_r) (8)
Var(E(R/'S,)) = (’g ;’jm. @)

Using the results of equation (8) we can genengteaed values of the Hurst exponent.
The expected Hurst exponent will vary depending loa talues ofn we use to run the
regression. Any range will be appropriate as loagh® system under study and EH&/S,)
series cover to the same valuesiofFor financial purpose, we will begin witi¥10. The final
value ofn will depend on the system under study.

R/S values are random variables, normally disteduand therefore we would expect
that the values dfl would also be normally distributed (see Petersg142):

Var(H.) =%, (10)

where T is total number of observations in the damyote that th&ar(H,) does not depend
onnorH, but it depends on the total sample Jize
Now t-statistics will be used to verify of the significze of the null hypothesis.

5. Finding Cycles

Hursf was the first to realize that an underlying peidaztbmponent could be detected
with R/S analysis ([1], p. 88) and used simpleistiatto test stability. Using this statistic we
give a more precise measure of the cycle lengtb. skatistics is calle® and it is defined as
follows ([1], p.92):

V. = (R/S),
Jn
This ratio would result in a horizontal line if tHYS statistics was scaling with the

square root of time. In other words, a ploM¥ersus logf) would be flat if the process was

an independent, random process. If the procesgparasstent and R/S was scaling at a faster
rate than the square root of timel>0.50), then the graph would be upwardly sloping.

Conversely, if the process was antipersistdit((50), the graph would be downward

sloping. By plottingV on the vertical axis and lag( on the horizontal axis, the “breaks”

would occur when thé&/ chart flattens out. At those points, the long-mgmarocess has
dissipated. R/S analysis is capable of determirpegodic cycles, even when they are
superimposed. The real power of R/S analysis isding nonperiodic cycles.

(11)

6. Empirical study

We apply R/S analysis to the daily and weekly clgsstock prices Bank of America
from 29.05.1986 to 7.5.2009 and the data follownfr@ww.yahoo.finance.confsee Figure
2). R/S analysis needs a long time intervals. Wee /87 observations for daily frequency
(only trading days) and 1197 observations for weéldquency.

When analyzing markets, we use logarithmic retutleined as follows:

S=In(PyPry), (8)
where$§ is logarithmic return at timeandP; is stock price at time

® Hurst, H. E. 1951The Long-Term Storage Capacity of Reservdirgnsactions of the American Society of
Civil Engineers 116.
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Daily prices of BAC (29.5.86-7.5.09) Weekly prices of BAC (29.5.86-7.5.09)
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Figure 2: Daily and weekly prices of Bank of America Corp. from 29.5.86 to 7.5.09

For R/S analysis, logarithmic returns are morerapmate than the more commonly
used percentage change in prices. The range udetbianalysis is the cumulative deviation
form the average, and logarithmic returns sum taudative return, while percentage changes
do not (see [2], p.83).

We will examine the behavior &f over different time increments, for daily and wigek
returns of stock Bank of America Corp. (BAC).

Table 1 show both thR/S, values and th#,. Figure 3 (on the left) shows theg R/S
plot for daily return data fof=5775 observations. Also plotted E{R/S) (calculated using
equation (8)) as a comparison against the null tingsis that the system is an independent
process.

The regression yieldeH=0.53540 andE(H)=0.56213 for daily returns (see Table 3).
The variance oE(H), as shown in equation (10) is 0.0002, for Gausstéandom variables.
The standard deviation &(H) is 0.0132. Thed value for daily returns is —2.0313 standard
deviation bellow its expected value, a significaesult. The regression yieldéd#=0.53520
and E(H)=0.56952 for weekly returns (see Table 4). Thaaveme of E(H) is 0.0003 and
standard deviation dE(H) is 0.0132. TheH value for weekly returns is —1.8418 standard
deviation bellow its expected value, a non sigaificresult for confidence level0.05, it
means that weekly returns are independent, iddiytidestributed and they are characterized
by a random walk.

We see a systematic deviation from the expectegesabn the Figure 3. However, a
break in theR/S graph appears to be at68 observationsldg(68x4,22), for n=340
observations 10g(3405,83) and forn=1445 observationsldg(1445x7,28). To estimate
precisely where this break occurs, we calculate \tkstatistics using equation (11Y/-(
statistics versukg(n) is plotted in right Figure 3)/-statistics is decreasing froxfgs=1.13 to
Vgs=1.11. Hurst exponent were estimated from the RéSand the E(R/S) anH equals to
0.57486 and expectdd equals to 0.63978, for ¥8<70. Hurst exponent equals to 0.54422
for 70<n<2890. The series exhibits persistende @.50). The next subperiod is 7#¥1445,
where the slope appeared to follow the E(R/S) ke0.51900 andE(H)= 0.52939 and they
are excessively closely and therefbrés insignificant. Process became persistent.

Figure 4 and Table 2 show the results of R/S amalydnfortunately, the Hurst
exponent is not significanti=0.53520 andE(H)= 0.56952 (see Table 4). The Hurst exponent
is —1.8418 standard deviations bellow its expeatellie. We need 3396 observations to
achieve significand8 Unfortunately, we have onlj=1188 observations for weekly return
data of stock Bank of America. Stocks Bank of Aro@nvere not come off until 1986, we
cannot increase the time frame.

%\We needr=4/(H-E(H))? points, see ([1], p.153)
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V statistic
N log N log R/S R/S E(R/S) BAC E(R/S)
10 2,302585| 1,122582 3,072779  2,650278 0,971698  0,838092
17 2,833213 1,463863 4,322625  3,879877 1,048391]  0,941009
20 2,995732 1,546395 4,694515  4,324742 1,049725  0,967042
34 3,526361 1,852481) 6,37562 6,050077| 1,09341 1,03758|
68 4,219508  2,231924] 9,317779  9,101265 1,129947| 1,10369
85 4,442651  2,325834]  10,23522 10,32771 1,110165| 1,120197|
170 5,135798  2,701515 14,90229 15,1309 1,142953 1,160488,
289 5,666427| 2,978472 19,65775  20,10602 1,156338| 1,182707|
340 5,828946/ 3,057879  21,28237| 21,94454] 1,154199 1,19011
578 6,359574] 3,347838  28,44118  28,96639 1,182997| 1,204843
1156 7,052721 3,68908  40,00803  41,44743 1,176707| 1,219042]
1445 7,275865  3,796379 44,5396|  46,47719 1,171689 1,222661
2890 7,969012]  4,307041  74,22053  66,21137 1,380623 1,23164
Tablel: R/Sanalysisand V-statistics, Bank of America: daily returns
V statistic
N log N log R/S R/S E(R/S) BAC E(R/S)

11 2,397895 1,166956) 3,212199  2,848343 0,968515  0,858808,
12 2,484907| 1,186805 3,276594  3,037391] 0,945871 0,876819
18 2,890372 1,433343  4,192693  4,032329]  0,988227  0,950429
22 3,091042] 1,532168 4,628198  4,602551] 0,986735  0,981267
27 3,295837| 1,63842 5,147031] 5,245172]  0,990546 1,009434
33 3,496508, 1,73145] 5,648838  5,940635  0,983337 1,034132
36 3,583519 1,818525 6,162762  6,264156) 1,027127| 1,044026|
44 3,78419 1,890857] 6,625041  7,065256 0,998763 1,065127|
54 3,988984 2,07206| 7,941168  7,968737 1,080656 1,084408,
66 4,189655  2,188393  8,920869  8,947224  1,098083 1,101327|
99 4,59512 2,373262 10,73235| 11,2472 1,078642 1,130386|
108 4,682131  2,371679 10,71537| 11,80396 1,031087| 1,135837|
132 4,882802  2,551656) 12,82832 13,18354] 1,116562 1,14748|
198 5,288267| 2,868894] 17,61753 16,4285 1,252023 1,167522]
297 5,693732  2,975899 19,60723]  20,39936 1,137727| 1,183691
396 5,981414 3,195528  24,42308  23,77524] 1,227306 1,19475]
594 6,386879  3,502434] 33,19614 29,3806 1,362054 1,2055

Table 2: R/Sanalysisand V-gtatistics, Bank of America: weekly returns

R/S analysis, Bank of America Corp., daily returns
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Figure 3: R/Sanalysisand V-statistics, Bank of America: daily returns




R/S analysis, Bank of America Corp., weekly returns
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V-statistics, Bank of America Corp., weekly returns
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Figure 4: R/Sanalysisand V-statistics, Bank of America: weekly returns

Parameter | Standard

DF Estimate Error t Value | Pr > [t|
I nter cept 1 -0,05695| 0,01963 -2,90| 0,0099
Hurst exponent H 1 0,53540] 0,00393] 136,16| <.0001
R-Squarefor H 0,9991
Adj R-Sq for H 0,9990
Expected | nter cept 1 -0,20089] 0,03168, -6,34| <.0001
expected Hurst exponent E(H) 1 0,56213] 0,00635 88,58| <.0001
R-Square for E(H) 0,9978
Adj R-Sqg for E(H) 0,9977
Number of Observations 19
Var (E(H)) 0,0002
SE(H)) 0,0132
significance -2,0313

Table 3: Hurst exponent for R/S analysis, Bank of America: daily returns

Parameter | Standard

DF Estimate Error t Value | Pr > [t]
I nter cept 1 -0,02633| 0,03035 -0,87| 0,3922
Hurst exponent H 1 0,53520{ 0,00647] 82,72|<.0001
R-Squarefor H 0,9955
Adj R-Sq for H 0,9953
Expected | nter cept 1 -0,23026] 0,02350 -9,80| <.0001
expected Hurst exponent E(H) 1 0,56952| 0,00501] 113,66| <.0001
R-Square for E(H) 0,9976
Adj R-Sq for E(H) 0,9975
Number of Observations 33
Var (E(H)) 0,0003
SE(H)) 0,0186
significance -1,8418

Table 4: Hurst exponent for R/S analysis, Bank of America: weekly returns
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Now, we divide time series to three parts: frorm28y 1986 to 25 February 1997, from
26 February 1997 to 27 August 2004 and from 30 Au@004 to 6 may 2009. These dates
are corresponding to the rapid changes in the po€éhe stock.

From Table 5 we see that time series had persisteantacter (time series is fractal
random walk) from 29 May 1986 to 6 May 2009 andsisignificant result. Time series is
random walk from 29 |May 1986 to 25 February 199Gt next period, from 26 February
1997 — 27 August 2004 time series is significaathyipersistent (time series is more volatile
than a random series) and last period indicateamndalk. These results may be caused by
insufficient number of data.

EstimatecH Standard deviation

ExpectedH

significance

Hurst coeficient 29 may 1986 -6 may 2009

0,53540

0,56213

0,013146519

-2,033237797

Hurst coeficient 29 may 1986 -25 feb 1997

0,56067

0,55842

0,01918117§

0,117302494

Hurst coeficient 26 feb 1997 - 27 aug 2004

0,47579

0,56174

0,023014364

-3,734623933

Hurst coeficient 30 aug 2004 - 6 may 2009

0,54495

0,58554

0,029135827

-1,393130167

Table 5: Hurst exponent for Bank of America daily return

7. Conclusion

In this paper we have shown how it is possible &asare the impact of information on the
time series by using Hurst exponeH{[2], p.102). H=0.50 implies a random walk.
Yesterday's events do not impact today. Today atew@#o not impact tomorrow. The events
are uncorrelated. Old news has already been alib@beé discounted by the markét.
greater than 0.50 implies that today's events gmgntomorrow. Information received today
continues to be discounted by the market afteast been received. This is not simply serial
correlation; it is a longer memory function. Infation can impact the future for very long
periods, and it goes across time scales.
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