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                                                         Abstract 
 
 
     Contemporary financial depression of the financial markets proves high fluctuations of the 
prices of the stocks. These fluctuations have considerable impact on the values of the 
financial portfolios. Classical approaches to modeling of the behavior of the prices of the 
stocks may produce wrong predictions of their future values. That is the reason why we 
introduce in this paper the fractal market analysis. Fractal structure accepts global 
determinism and local randomness of the behavior of the financial time series. We will use 
R/S analysis in this paper. R/S analysis can distinguish fractals from other types of time 
series, revealing the self-similar statistical structure. 
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1. Introduction 

 The financial markets are an important part of any economy. For that reason, financial 
markets are also an important aspect of every model of the economy1. Markets are “efficient” 
if prices reflect all current information that could anticipate future events. Therefore, only the 
speculative, stochastic component could be modeled, the change in prices due to changes in 
value could not. If markets do not follow a random walk, it is possible that we may be over-or 
understanding our risk and return potential from investing versus speculating. 

2. Introduction to Fractals and the Fractal dimensions 
The development of fractal geometry has been one of the 20-th century’s most useful 

and fascinating discoveries in mathematics ([2], p.45). Fractals give structure to complexity, 
and beauty to chaos. Most natural shapes, and time series, are best described by fractals.  
Fractals are self–referential, or self–similar. Fractal shapes show self–similarity with respect 
to space. Fractal time series are random fractals, which have more in common with natural 
objects than the pure mathematical fractals we will cover initially. We will be concerned 
primarily with fractal time series, but fractal shapes give a good intuitive base for what “self-
similarity” actually means. Figure 1 shows daily and weekly Bank of America Corporation 
prices2 for consecutive observations from march 2007 to may 2009. With no scale on the X 
and Y axes, we are not able to determine which graph is which. Figure 1 illustrates self-
similarity in a time series.  
                                                 
1 http://www.economymodels.com/financialmarkets.asp 
2 Data were retrieved from www.yahoo.com 
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Figure 1: Daily and weekly prices of stock Bank of America Corp. 

Fractal shapes can be generated in many ways. The simplest way is to take a generating 
rule and iterate it over and over again. Random fractals are combination of generating rules 
chosen at random for different scales. Combination of randomness coupled with deterministic 
generation rules, or “causality”, can make fractals useful in capital market analysis. Random 
fractals ([2], p.51) do not necessarily have pieces that look like pieces of the whole. Instead, 
they may be qualitatively related. In the case of time series, we will find that fractal time 
series are qualitatively self similar in that, at different scales, the series have similar statistical 
characteristics. If we would like to understand the underlying causality of the structure of time 
series, then classical geometry offers little help. May be, time series is a random walk – a 
system so complex that the prediction becomes impossible. In statistical term, the number of 
degrees of freedom or factors influencing the system is very large. These systems are not 
well-described by standard Gaussian statistics. Standard statistical analysis begins by 
assuming that the system under study is primarily random; that is, the causal process that 
created the time series has many component parts, or degree of freedom, and the interaction 
of those components is so complex that deterministic explanation is not possible ([1], p.53). 
Only probabilities can help us to understand and take advantage of the process. The 
underlying philosophy implies that randomness and determinism cannot coexist. In order to 
study the statistics of these systems and create a more general analytical framework, we need 
a probability theory that is nonparametric. In this paper we introduce nonparametric 
methodology that was discovered by H.E. Hurst3. 

In advance, we introduce the term fractal dimension. The fractal dimension describes 
how a time series fills its space, is the product of all factors influencing the system that 
produces time series ([2], p.57). Fractal time series can have fractional dimensions. The 
fractal dimension of a time series measures how jagged the time series is ([1], p.16). As 
would be expected, a straight line has a fractal dimension of 1. Time series is only random 
when it is influenced by a large number of events that are equally likely to occur. In statistical 
term, it has a high number of degree of freedom. A random series would have no correlation 
with previous points. Nothing would keep the points in the same vicinity, to preserve their 
dimensionality. Instead, they will fill up whatever space they are placed in. A nonrandom 
time series will reflect the nonrandom nature of its influences. The data will clump together, 
to reflect the correlations inherent in its influences. In other words, the time series will be 
fractal. To determine the fractal dimension, we must measure how the object clumps together 
in its space. However, a random walk has 50–50 chance of rising or falling, hence, its fractal 
dimension is 1.50. The fractal dimension of a time series is important because it recognizes 
that process can be somewhere between deterministic (a line with fractal dimension of 1) and 
random (a fractal dimension of 1.50). In fact, the fractal dimension of a line can range from 1 
                                                 
3 Hurst, H.E. 1951. The Long-Term Storage Capacity of Reservoirs. In: Transaction of the American Society of 
Civil Engineers 116. 
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to 2. The normal distribution has an integer dimension of 2, which many of characteristics of 
the time series. At values 1.50<d<2, a time series is more jagged than a random series.  

They are many ways of calculating fractal dimensions. We introduce methodology of 
the Hurst exponent H, and we convert it into the fractal dimension d in this paper. 

3. R/S analysis and Hurst exponent 
Hurst was aware of Einstein`s4 work of Brownian motion. Brownian motion became the 

primary model for a random walk process. Einstein found that the distance that a random 
particle covers increases with the square root of time used to measure it, or: 

 R=T0.50, (1) 
where R is the distance covered and T is a time index. 
Equation (1) is called the T to the one–half rule, and it is commonly used in statistics. 
Financial economists use it to annualize volatility or standard deviation. To standardize the 
measure over time, Hurst decided to create a dimensionless ratio by dividing the range by the 
standard deviation of the observations. Hence, the analysis is called rescaled range analysis 
(R/S analysis). Hurst found that most natural phenomena follow a “biased random walk” – a 
trend with noise. The strength of the trend and the level of noise could be measured by how 
the rescaled range scales with time, that is, by how high H is above 0.50. Peters ([1] p.56) 
reformulated Hurst`s work for a general time series as follows. 

 We begin with a time series, X={x1, x2, …, xn}, to represent n consecutive values. For 
markets, it can be the daily changes in price of a stock index. The rescaled range was 
calculated by first rescaling or “normalizing” the data by subtracting the sample mean xm: 

 Zr=(xr–xm), r=1,2,…,n (2) 
The resulting series, Z, now has a mean of zero. The next step creates a cumulative time series 
Y: 

 Y1=(Z1+Zr), r =2,3,…,n (3) 
Note that, by definition, the last value of Y (Yn) will always be zero because Z has a mean of 
zero. The adjusted range, Rn, is the maximum minus minimum value of the Yr: 
 Rn=max(Y1, Y2,…, Yn)–min(Y1, Y2,…, Yn). (4) 
The subscript, n, for Rn now signifies that this is the adjusted range for x1, x2, …, xn. Because 
Y has been adjusted to a mean of zero, the maximum value of Y will always be greater than or 
equal to zero, and the minimum will always be less than or equal to zero. Hence, the adjusted 
range, Rn, will always be nonnegative. This adjusted range, Rn, is the distance that the system 
travels for time index n. If we set n=T, we can apply equation (1), provided that the time 
series, X, is independent for increasing values of n. However, equation (1) applies only to 
time series that are in Brownian motion (they have zero mean, and variance is equal to one). 
To apply this concept to time series that are not in Brownian motion, we need to generalized 
equation (1) and take into account systems that are not independent. Hurst found that the 
following was a more general form of equation (1): 
 (R/S)n=c.nH (5) 
The subscript, n, for (R/S)n refers to the R/S value for x1, x2, …, xn and c is a constant. 

The R/S value of equation (5) is referred to as the rescaled range because it has zero 
mean and is expressed in terms of local standard deviation. In general, the R/S value scaled as 
we increase the time increment, n, by a power–law value equal to H, generally called the 
Hurst exponent. 

Rescaling allows us to compare periods of time that may be many apart. In comparing 
stock returns of the 1920s with those of the 1980, prices present a problem because of 
inflationary growth. Rescaling minimize this problem, by rescaling the data to zero mean and 
standard deviation of one, to allow diverse phenomena and time periods to be compared. 
                                                 
4 Einstein, A. 1908. Uber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in 
ruhenden Flüssigkeiten suspendierten Teilchen. Annals of Physics 322. 
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Rescaled range analysis can also describe time series that have no characteristic scale. This is 
a characteristic of fractals. 

The Hurst exponent can be approximated by plotting the log(R/Sn) versus the log(n) and 
solving for the slope through an ordinary least squares regression: 

 log(R/Sn)=log(c)+H.log(n) (6) 
If a system is independently distributed, then H=0.50. When H differed from 0.50, the 

observations are not independent. Each observation carried a „memory“ of all the events that 
preceded it. What happens today influences the future. Where we are now is a result of where 
we have been in the past. Time is important. The impact of the present on the future can be 
expressed as a correlation: 

 C=2(2H-1)–1, (7) 
where C is correlation measure and H is Hurst exponent.  
It is important to remember that this correlation measure is not related to the Auto Correlation 
Function (ACF) of Gaussian random variables ([2], p.70). The ACF assumes Gaussian, or 
near-Gaussian, properties in the underlying distribution. The ACF works well in determining 
short-run dependence, but tends to understate long-run correlation for non-Gaussian series 
(full mathematical explanation we find in [5]. 
There are three distinct classifications for the Hurst exponent ([2], p.64): 

1. H=0.50: time series is random, events are random and uncorrelated. Equation (7) 
equals zero. The present does not influence the future. Its probability density 
function can be normal curve, but it does not have to be. R/S analysis can classify 
an independent series, no mater what the shape of the underlying distribution. 

2. 0≤H<0.50: time series is antipersistent, or ergodic. If the time series has been up 
in the previous period, it is more likely to be down in the next period. Conversely, 
if it was down before, it is more likely to be up in the next period. The strength of 
this antipersistent behavior depends on how close H is to zero. The closer it is to 
zero, the closer C in equation (7) moves toward –0.50, or negative correlation. 
This time series is more volatile than a random series. 

3. 0.50≤H<1.00: time series have a persistent or trend-reinforcing character. If the 
series has been up (down) in the last period, then the chances are that it will 
continue to be positive (negative) in the next period. Trend is apparent. The 
strength of the trend-reinforcing behavior, or persistence, increases as H 
approaches 1.0. The closes H is to 0.5, the noisier it will be, and the less defined 
its trends will be. Persistent series are fractional Brownian motion, or biased 
random walk5. The strength of the bias depends on how far H is above 0.50. A 
high H value shows less noise, more persistence and clearer trends than do lower 
value. A high H means less risk. 

4. Testing R/S analysis 
To evaluate the significance of R/S analysis, we calculate expected value of the R/S 

statistics and the Hurst exponent. We compare the behavior of our process, described by R/S 
analysis with an independent and random system and gauge its significance. 

We will test this null hypothesis: “The process is independent, identically distributed 
and is characterized by a random walk”6. 

To verify this hypothesis, we calculate expected value of the adjusted range7 E(R/Sn) 
and its variance8 Var(E(R/Sn)). 
                                                 
5 Biased random walks were extensively studied by Hurst in the 1940s and again by Mandelbrot in the 1960s and 
1970s. Mandelbrot called them fractional brownian motions.([2], p.61) 
6 This process has Gaussian structure (see [1], p.66). 
7 This formula was derrived by Anis and Lloyd ([1], p.71) 
8 Variance was calculated by Feller ([1], p.66) 
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Using the results of equation (8) we can generate expected values of the Hurst exponent. 
The expected Hurst exponent will vary depending on the values of n we use to run the 
regression. Any range will be appropriate as long as the system under study and the E(R/Sn) 
series cover to the same values of n. For financial purpose, we will begin with n=10. The final 
value of n will depend on the system under study. 

R/S values are random variables, normally distributed and therefore we would expect 
that the values of H would also be normally distributed (see Peters [1], p.72): 

 
T

HVar n

1
)( = , (10) 

where T is total number of observations in the sample. Note that the Var(Hn) does not depend 
on n or H, but it depends on the total sample size T. 
Now t-statistics will be used to verify of the significance of the null hypothesis. 

5. Finding Cycles 
Hurst9 was the first to realize that an underlying periodic component could be detected 

with R/S analysis ([1], p. 88) and used simple statistic to test stability. Using this statistic we 
give a more precise measure of the cycle length. The statistics is called V and it is defined as 
follows ([1], p.92): 

 
n

SR
V n

n

)/(=  (11) 

This ratio would result in a horizontal line if the R/S statistics was scaling with the 
square root of time. In other words, a plot of V versus log(n) would be flat if the process was 
an independent, random process. If the process was persistent and R/S was scaling at a faster 
rate than the square root of time (H>0.50), then the graph would be upwardly sloping. 
Conversely, if the process was antipersistent (H<0.50), the graph would be downward 
sloping. By plotting V on the vertical axis and log(n) on the horizontal axis, the “breaks” 
would occur when the V chart flattens out. At those points, the long-memory process has 
dissipated. R/S analysis is capable of determining periodic cycles, even when they are 
superimposed. The real power of R/S analysis is in finding nonperiodic cycles. 

6. Empirical study 
We apply R/S analysis to the daily and weekly closing stock prices Bank of America 

from 29.05.1986 to 7.5.2009 and the data follow from www.yahoo.finance.com (see Figure 
2). R/S analysis needs a long time intervals. We have 5787 observations for daily frequency 
(only trading days) and 1197 observations for weekly frequency. 

When analyzing markets, we use logarithmic returns, defined as follows: 
 St=ln(Pt/Pt-1), (8) 

where St is logarithmic return at time t and Pt is stock price at time t.  
                                                 
9 Hurst, H. E. 1951. The Long-Term Storage Capacity of Reservoirs. Transactions of the American Society of 
Civil Engineers 116. 
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Figure 2: Daily and weekly prices of Bank of America Corp. from 29.5.86 to 7.5.09 

 For R/S analysis, logarithmic returns are more appropriate than the more commonly 
used percentage change in prices. The range used in R/S analysis is the cumulative deviation 
form the average, and logarithmic returns sum to cumulative return, while percentage changes 
do not (see [2], p.83).  

We will examine the behavior of H over different time increments, for daily and weekly 
returns of stock Bank of America Corp. (BAC). 

Table 1 show both the R/Sn values and the Vn. Figure 3 (on the left) shows the log R/S 
plot for daily return data for T=5775 observations. Also plotted is E(R/S) (calculated using 
equation (8)) as a comparison against the null hypothesis that the system is an independent 
process.  

The regression yielded H=0.53540 and E(H)=0.56213 for daily returns (see Table 3). 
The variance of E(H), as shown in equation (10) is 0.0002, for Gaussian random variables. 
The standard deviation of E(H) is 0.0132. The H value for daily returns is –2.0313 standard 
deviation bellow its expected value, a significant result. The regression yielded H=0.53520 
and E(H)=0.56952 for weekly returns (see Table 4). The variance of E(H) is 0.0003 and 
standard deviation of E(H) is 0.0132. The H value for weekly returns is –1.8418 standard 
deviation bellow its expected value, a non significant result for confidence level α=0.05, it 
means that weekly returns are independent, identically distributed and they are characterized 
by a random walk. 

We see a systematic deviation from the expected values on the Figure 3. However, a 
break in the R/S graph appears to be at n=68 observations (log(68)≈4,22), for n=340 
observations (log(340)≈5,83) and for n=1445 observations (log(1445)≈7,28). To estimate 
precisely where this break occurs, we calculate the V-statistics using equation (11) (V-
statistics versus log(n) is plotted in right Figure 3). V-statistics is decreasing from V68=1.13 to 
V85=1.11. Hurst exponent were estimated from the R/S plot and the E(R/S) and H equals to 
0.57486 and expected H equals to 0.63978, for 10≤n<70. Hurst exponent equals to 0.54422 
for 70<n≤2890. The series exhibits persistence (H>0.50). The next subperiod is 70<n≤1445, 
where the slope appeared to follow the E(R/S) line. H=0.51900 and E(H)= 0.52939 and they 
are excessively closely and therefore H is insignificant. Process became persistent. 

Figure 4 and Table 2 show the results of R/S analysis. Unfortunately, the Hurst 
exponent is not significant. H=0.53520 and E(H)= 0.56952 (see Table 4). The Hurst exponent 
is –1.8418 standard deviations bellow its expected value. We need 3396 observations to 
achieve significance10. Unfortunately, we have only T=1188 observations for weekly return 
data of stock Bank of America. Stocks Bank of America were not come off until 1986, we 
cannot increase the time frame. 
                                                 
10 We need T=4/(H-E(H))2 points, see ([1], p.153) 
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N log N log R/S R/S E(R/S) 
V statistic 

BAC E(R/S) 

10 2,302585 1,122582 3,072779 2,650278 0,971698 0,838092 

17 2,833213 1,463863 4,322625 3,879877 1,048391 0,941009 

20 2,995732 1,546395 4,694515 4,324742 1,049725 0,967042 

34 3,526361 1,852481 6,37562 6,050077 1,09341 1,03758 

68 4,219508 2,231924 9,317779 9,101265 1,129947 1,10369 

85 4,442651 2,325834 10,23522 10,32771 1,110165 1,120197 

170 5,135798 2,701515 14,90229 15,13091 1,142953 1,160488 

289 5,666427 2,978472 19,65775 20,10602 1,156338 1,182707 

340 5,828946 3,057879 21,28237 21,94454 1,154199 1,19011 

578 6,359574 3,347838 28,44118 28,96639 1,182997 1,204843 

1156 7,052721 3,68908 40,00803 41,44743 1,176707 1,219042 

1445 7,275865 3,796379 44,5396 46,47719 1,171689 1,222661 

2890 7,969012 4,307041 74,22053 66,21137 1,380623 1,23164 
Table 1: R/S analysis and V-statistics, Bank of America: daily returns 

 

N log N log R/S R/S E(R/S) 

V statistic 

BAC E(R/S) 

11 2,397895 1,166956 3,212199 2,848343 0,968515 0,858808 

12 2,484907 1,186805 3,276594 3,037391 0,945871 0,876819 

18 2,890372 1,433343 4,192693 4,032329 0,988227 0,950429 

22 3,091042 1,532168 4,628198 4,602551 0,986735 0,981267 

27 3,295837 1,63842 5,147031 5,245172 0,990546 1,009434 

33 3,496508 1,73145 5,648838 5,940635 0,983337 1,034132 

36 3,583519 1,818525 6,162762 6,264156 1,027127 1,044026 

44 3,78419 1,890857 6,625041 7,065256 0,998763 1,065127 

54 3,988984 2,07206 7,941168 7,968737 1,080656 1,084408 

66 4,189655 2,188393 8,920869 8,947224 1,098083 1,101327 

99 4,59512 2,373262 10,73235 11,2472 1,078642 1,130386 

108 4,682131 2,371679 10,71537 11,80396 1,031087 1,135837 

132 4,882802 2,551656 12,82832 13,18354 1,116562 1,14748 

198 5,288267 2,868894 17,61753 16,4285 1,252023 1,167522 

297 5,693732 2,975899 19,60723 20,39936 1,137727 1,183691 

396 5,981414 3,195528 24,42308 23,77524 1,227306 1,194751 

594 6,386879 3,502434 33,19614 29,3806 1,362054 1,2055 

Table 2: R/S analysis and V-statistics, Bank of America: weekly returns 
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Figure 3: R/S analysis and V-statistics, Bank of America: daily returns 
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V−statistics, Bank of America Corp., weekly returns
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Figure 4: R/S analysis and V-statistics, Bank of America: weekly returns 

Parameter Estimates for daily returns of BAC 

  DF 
Parameter 
Estimate 

Standard 
Error t Value Pr > |t| 

Intercept 1 -0,05695 0,01963 -2,90 0,0099 

Hurst exponent H 1 0,53540 0,00393 136,16 <.0001 

R-Square for H 0,9991         

Adj R-Sq for H 0,9990     
        

Expected Intercept 1 -0,20089 0,03168 -6,34 <.0001 

expected Hurst exponent E(H) 1 0,56213 0,00635 88,58 <.0001 

R-Square for E(H) 0,9978     

Adj R-Sq for E(H) 0,9977     

Number of Observations 19     

Var(E(H)) 0,0002     

s(E(H)) 0,0132     

significance -2,0313     

Table 3: Hurst exponent for R/S analysis, Bank of America: daily returns 

Parameter Estimates for weekly returns of BAC 

  DF 
Parameter 
Estimate 

Standard 
Error t Value Pr > |t| 

Intercept 1 -0,02633 0,03035 -0,87 0,3922 

Hurst exponent H 1 0,53520 0,00647 82,72 <.0001 

R-Square for H 0,9955         

Adj R-Sq for H 0,9953     
        

Expected Intercept 1 -0,23026 0,02350 -9,80 <.0001 

expected Hurst exponent E(H) 1 0,56952 0,00501 113,66 <.0001 

R-Square for E(H) 0,9976     

Adj R-Sq for E(H) 0,9975     

Number of Observations 33     

Var(E(H)) 0,0003     

s(E(H)) 0,0186     

significance -1,8418     

Table 4: Hurst exponent for R/S analysis, Bank of America: weekly returns 
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Now, we divide time series to three parts: from 29 may 1986 to 25 February 1997, from 
26 February 1997 to 27 August 2004 and from 30 August 2004 to 6 may 2009. These dates 
are corresponding to the rapid changes in the prices of the stock.  

From Table 5 we see that time series had persistent character (time series is fractal 
random walk) from 29 May 1986 to 6 May 2009 and it is significant result. Time series is 
random walk from 29 |May 1986 to 25 February 1997. For next period, from 26 February 
1997 – 27 August 2004 time series is significantly antipersistent (time series is more volatile 
than a random series) and last period indicate random walk. These results may be caused by 
insufficient number of data.  

 

  Estimated H Expected H Standard deviation significance 

Hurst coeficient 29 may 1986 -6 may 2009 0,53540 0,56213 0,013146519 -2,033237792 

Hurst coeficient 29 may 1986 -25 feb 1997 0,56067 0,55842 0,019181178 0,117302494 

Hurst coeficient 26 feb 1997 - 27 aug 2004  0,47579 0,56174 0,023014365 -3,734623933 

Hurst coeficient 30 aug 2004 - 6 may 2009 0,54495 0,58554 0,029135827 -1,393130167 

Table 5: Hurst exponent for Bank of America daily return 

7. Conclusion 
In this paper we have shown how it is possible to measure the impact of information on the 
time series by using Hurst exponent H([2], p.102). H=0.50 implies a random walk. 
Yesterday`s events do not impact today. Today`s events do not impact tomorrow. The events 
are uncorrelated. Old news has already been absorbed and discounted by the market. H 
greater than 0.50 implies that today`s events do impact tomorrow. Information received today 
continues to be discounted by the market after it has been received. This is not simply serial 
correlation; it is a longer memory function. Information can impact the future for very long 
periods, and it goes across time scales. 

8. Acknowledgement 
The work on this paper has been supported by Science and Technology Assistance Agency 
under the contract No. APVV-0375-06, and by the VEGA grant agency, grant numbers 
1/0500/09, 1/4024/07 and 1/0373/08.  

9. Bibliography 
[1] PETERS, E.E. 1994. Fractal market analysis. New York: John Wiley & Sons, Inc., 

1994. 315 s. ISBN 0-471-58524-6.  
[2] PETERS, E.E. 1996. Chaos and order in the capital markets. New York: John Wiley & 

Sons, Inc., 1996. 274 s. ISBN 0-471-13938-6. 
[3] TREŠL, J. 2003. Statistical methods and capital markets. Praha: Oeconomica, 2003. 

110 s. ISBN 80-245-0598-3.  
[4]   http://www.economymodels.com/financialmarkets.asp 
[5] MANDELBROT, B. 1972. Statistical Methodology for Non-Periodic Cycles: From the 

Covariance to R/S Analysis. Annals of Economic Social Measurement 1, 1972. 
[6] HURST, H. E. 1951. The Long-Term Storage Capacity of Reservoirs. Transactions of 

the American Society of Civil Engineers 116, 1952 


